
Lecture 15: Tree

Definition 1 Let G be a graph. A vertex v of G is called a cut-vertex if G− v has more components

than G.

Theorem 1 Let G be a connected graph with |G| ≥ 2 and let v ∈ V (G).

a: If deg(v) = 1, then G− v is connected, so that v is never a cut-vertex.

b: If G− v is connected, then either deg(v) = 1 or v is on a cycle.

Proof: (a) Let a, b ∈ V (G − v), a ̸= b. Since G is connected there is a a − b path in G. Eveidently

the vertex v can not be the internal vertex of this path, as the degree of internal vertex is ≥ 2. So the

path a− b is available in G− v. So, G− v is connected.

(b) Assume G− v is connected. If deg(v) = 1, then nothing to prove. So let deg(v) ≥ 2. To show that

v is on a cycle in G. Let u and w be two distinct neighbors of v. Since G− v is connected, there is a

path (u = u1, u2, . . . , uk = w) in G− v. Then (u = u1, u2, . . . , uk = w, v) is a cycle.

Definition 2 Let G be a graph. An edge e in G is called a cut-edge or a bridge if G − e has more

connected components than that of G.

Proposition 1 Let G be connected and let e = uv be a cut-edge. Then G−e has two components, one

containing u and the other containing v.

Proof: If G− e is not disconnected, then by definition, e can not be a cut edge. So G− e has at least

two components. Let Gu (respectively, Gv) be the component containing the vertex u (respectively,

v). We claim that these are the only components.

Let w ∈ V (G). Since G is connected, there is a path, say P , from w to u. Moreover, either P contains

v as its internal vertex or P does not contain v. In the first case, w ∈ V (Gv) and in the latter case,

w ∈ V (Gu). Thus, every vertex of G is either in V (Gv) or in V (Gu) and hence the required result

follows.

Theorem 2 Let G be a graph and let e be an edge. Then, e is a cut-edge iff e is not on a cycle.

Proof: Suppose e = uv is a cut-edge of G. Let F be the component of G that contains e. Then, by

the above Proposition, F − e has two components, namely, Fu that contains u and Fv that contains v.

Let if possible, C = (u, v = v1, . . . , vk = u) be a cycle containing e = uv. Then (v = v1, . . . , vk = u) is

a u− v path in F − e. Hence, F − e is still connected, a contradiction. Thus, e cannot be on any cycle.
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Conversely, let e = uv be an edge which is not on any cycle. Now, suppose that F is the component

of G that contains e. We need to show that F − e is disconnected. Let if possible, there is a u − v

path, say (u = u1, . . . , uk = v), in F − e. Then, (v, u = u1, . . . , uk = v) is a cycle containing e. A

contradiction to e not lying on any cycle.

Definition 3 A connected graph G with no cycles is called a tree. A collection of trees is called a

forest.

Proposition 2 A tree on n vertices has n− 1 edges.

Proof: We apply induction on n. Take a tree on n ≥ 2 vertices and delete an edge e. Then, we get

two subtrees T1, T2 of order n1, n2, respectively, where n1 + n2 = n. So, E(T ) = E(T1) ∪E(T2) ∪ {e}.

By induction hypothesis |E(T )| = |E(T1)|+ |E(T2)|+ 1 = n1 − 1 + n2 − 1 + 1 = n1 + n2 − 1 = n− 1.

Corollary 1 A tree with at least two vertices has at least two pendant vertices.

Proof: Let T be a tree on n ≥ 2 vertices. Then
∑

v∈V (T ) deg(v) = 2|E(T )| = 2n− 2. Then it is easy

to see that T has at least two vertices of degree 1 (by PHP).

We now prove that the following statements that characterize trees are equivalent.

Theorem 3 Let G = (V,E) be a graph with |V | = n and |E| = m. Then f.s.a.e.

1. G is a tree.

2. Let u, v ∈ V . Then there is a unique path from u to v.

3. G is connected and n = m+ 1.

Proof: (1 ⇒ 2): Since G is connected, for each u, v ∈ V , there is a path from u to v. On the contrary,

let us assume that there are two distinct paths P1 and P2 that join the vertices u and v. Since P1 and

P2 are distinct and both start at u and end at v, there exist vertices, say u0 and v0, such that the paths

P1 and P2 take different edges after the vertex u0 and the two paths meet again at the vertex v0 (note

that u0 can be u and v0 can be v). In this case, we see that the graph G has a cycle consisting of the

portion of the path P1 from u0 to v0 and the portion of the path P2 from v0 to u0. This contradicts

the assumption that G is a tree (it has no cycle).

(2 ⇒ 3): Since for each u, v ∈ V , there is a path from u to v, the connectedness of G follows. We

need to prove that n = m+ 1. We prove this by induction on the number of vertices of a graph. The

result is clearly true for n = 1 or n = 2. Let the result be true for all graphs that have n or less than

n vertices. Now, consider a graph G on n + 1 vertices that satisfies the conditions of Item 2. The
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uniqueness of the path implies that if we remove an edge, say e ∈ E, then the graph G will become

disconnected. That is, G \ e will have exactly two components. Let the number of vertices in the two

components be n1 and n2. Then n1, n2 ≤ n and n1 + n2 = n+ 1. Hence, by induction hypothesis, the

number of edges in G− e equals (n1 − 1) + (n2 − 1) = n1 + n2 − 2 = n− 1 and hence the number of

edges in G equals n − 1 + 1 = n. Thus, by the principle of mathematical induction, the result holds

for all graphs that have a unique path from each pair of vertices.

(3 ⇒ 1): It is already given that G is a connected graph. We need to show that G has no cycle. So, on

the contrary, let us assume that G has a cycle of length k. Then this cycle has k vertices and k edges.

Now, consider the n − k vertices that do not lie of the cycle. Then for each vertex (corresponding to

the n−k vertices), there will be a distinct edge incident with it on the smallest path from the vertex to

the cycle. Hence, the number of edges will be greater than or equal to k+(n−k) = n. A contradiction

to the assumption that the number of edges equals n− 1. Thus, the required result follows.
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